A Critical Reappraisal
of the Chronological Framework
of the Early Urewe
Iron Age Industry

Bernard CLIST

Abstract:

In the last fifteen years, the Early Urewe Iron Age industry has played, and still plays, a key role in the diffusion paradigm of iron metallurgy in sub-Saharan Africa. This technological diffusion is then linked to the expansion of Bantu-speakers. The Urewe archaeological sites extend from Zaire to Tanzania, with Uganda, Rwanda, Burundi and Kenya along the way. No critical re-examination of the 14C and thermoluminescence data associated with Urewe cultural material had been done.

This paper presents such a critical evaluation of Urewe dates. It shows this industry to date to 2500-1300 bp (550 bc-ad 650) and that iron smelting is indeed associated with early dates. It is one of the oldest African iron-smelting centres. The origin of iron metallurgy is then discussed with the latest available archaeological data from Africa.
Une réévaluation critique du cadre chronologique de l'industrie de l'âge ancien du Fer Uwege:

Depuis quinze ans l'industrie de l'âge du fer ancien Uwege d'Afrique Orientale joue un grand rôle dans les modèles de diffusion de la métallurgie en Afrique sud-saharienne, diffusion elle-même rattachée à l'expansion des peuples de parler Bantu. Les sites archéologiques Uwege s'échelonnent du Zaïre à la Tanzanie en passant par le Burundi, le Rwanda, le Kivu et l'Ouganda. Ainsi, examen critique des dates radiocarbones et thermoluminescences associées à cet ensemble culturel s'avère encore être fait.

Le présent article donne un bilan critique de ces dates, montre que la chronologie de l'Uwege s'étale de 2500 à 1300 bp (550 ac-650) et que ces plus anciennes dates sont bien associées à des tracés de métallurgie du 1er. Il s'agit d'un des plus vieux centres de fonte de fer en Afrique.

Il est alors discuté le problème de l'origine de cette métallurgie sur le continent africain à l'aide des plus récentes données archéologiques disponibles.

Une revalorisation critique de l'architecture et chronologie de l'Industrie de la Belle de Fer Antiga Uwege:

Nos quinze ans a indústria da idade do ferro antiga Uwege da África Oriental se desenvolviu um importante papel nos modelos de difusão da metalurgia na África ao Sul do Saha, estando esta emova difusão ligada à expansão dos povos de línguas bantu. Os sitios arqueológicas Uwege estão-se do Zaïre a Tanzânia, passando pelo Burundi, o Rwanda, o Quénia e o Uganda. Nenhum exame crítico das datas por radiocarbono e termoluminescência associadas a este conjunto cultural tinha sido feito até a data.

Este artigo apresenta uma revisão crítica dessas datas, revelando que a cronologia do Uwege vai de 2500 a 1300 bp (550 ac-650 da) e que as datas mais recentes estão associadas a vestígios de metalurgia do ferro. Trata-se de um dos centros mais antigas de fabricação de ferro em África. O problema da origem desta metalurgia no continente africano é então discutido à luz dos mais recentes dados arqueológicos de que se dispõe.

Revaluación crítica del marco cronológico de la industria de la Edad de Hierro Antigua del Uwege:

Desde hace quince años, la Edad de Hierro Antigua del Uwege, en el África oriental, desempeñó un papel importante en los modelos de difusión de la metalurgia en el África sub-sahariana, opinión que está a su vez vinculada con la expansión de los pueblos de habla bantú. Los emplazamientos arqueológicos del Uwege se extienden desde Zaire hasta Tanzania, pasando por Burundi, Rwanda, Kenia y Uganda. Hasta ahora no existe ningún estudio crítico de las fechas radiocarbónicas y termoluminescentes relacionadas con dicho conjunto cultural. El presente artículo hace un balance crítico de las fechas mencionadas, demuestra que la cronología del Uwege se extiende de 2500 a 1300 bp (550 ac-650 da) y que
1. INTRODUCTION

Since the turn of the 19th century, the recent history of sub-saharan Africa has been linked in some way with the problem of the expansion of Bantu-speakers (Vansina, 1979, 1980).

From 1959 onwards, archaeologists engaged in Iron Age research have taken up the task of deciphering the upheavals outlined by linguists (Vansina, 1980; Eggert, 1981). In doing so, they have proposed models which made over-extensive use of 14C dating evidence in African studies since B. M. Fagan's first article published in the Journal of African History (Fagan, 1961).

It is now self-evident that 14C chronology is one of the crucial aspects of the study of African Iron Age alongside new ways of considering ceramic material (see Huffman, 1980). It helps archaeologists understand the relationships existing between ceramic groups in various parts of sub-saharan Africa, groups which are materializations of past human interactions (see Collett and Robertshaw, 1983 for a similar argument).

This interest in radiocarbon dating first culminated with D. W. Phillipson's article (Phillipson, 1975) reviewing all the 14C dates applying to the Iron Age in Eastern and Southern Africa which were available at the time. The major drawback of this article is that it is still considered today as being the basis for any type of chronological work in those areas. As Huffman has rightly pointed out, no internal review of these dates were made (Huffman, 1979, p. 235). More recently, it has been possible to state that "a much more critical attitude in dealing with radiocarbon dates must be developed, especially concerning the context in which the samples were collected" (de Mareé, 1982, p. 111), an approach carried out lately on pastoral neolithic sites in Eastern Africa (Collett and Robertshaw, 1983).

The number of available radiocarbon dates have, in some cases, trebled since 1975. It is especially so for the Iron Age industry of the Littoral coast in area of sub-saharan Africa which was, and still is, considered by many as the point of origin of all the early Iron Age ceramic wares found further south and east towards the Cape 1. From 18 (Phillipson, 1975) this

1. Recently D. Phillipson has proposed to call the early Iron Age complex of eastern and southern Africa the Chifunabura complex (Phillipson, 1985).
industry now is bracketed by 59 dates; this increase is due to fieldwork done in the last ten years.

The Urewe industry was first presented to the world as "dimple based pottery" (Leakey, e.a., 1948). It was not before the end of the 1960s that this industry received a new name not linked with any particular morphological attribute: Urewe, according to one of the sites described in the original paper (Posansky, 1967, p. 644; Soper, 1971a).

In the early 1970s two general syntheses of archaeological facts relating to the early Iron Age sequences in Central, Eastern, and Southern Africa included the Urewe industry and made it play a key role (Huffman, 1970; Soper, 1971a). The Urewe was found to be ancestral to other more southerly industries. This scheme was again taken up by D.W. Phillipson a few years later when he published his radiocarbon dates synthesis (Phillipson, 1975). It is now a well-established fact of Iron Age research.

In the 1970s and early 1980s field work done by F. Van Noten, P. Schmidt and M.-C. Van Grunderbeek has widened our knowledge of Urewe. The early Iron Age of the Interlacustrine area is made up of a now well-known ware (Urewe ware?), a complex iron technology which employed decorated «bricks» for the furnace shaft, iron implements, quite large open-air settlements (up to the two hectares at Urewe), rockshelter and cave settlements, the knowledge and use of domestication (Van Grunderbeek, 1981, p. 27) and the practice of agriculture (Van Grunderbeek e.a., 1982, p. 42).

The finds of Urewe industry material extend over some 400,000 square kilometers, from Kivi in the West to the eastern shores of Lake Victoria in the East, from the Nile in the Chobi area of Uganda in the North to the southern shores of Lake Victoria and to Burundi in the South (Figure 1).

Due to the seminal importance of 14C dating for archaeological inference and to the key position of Urewe in Iron Age models, for the first time all dating evidence associated at any one time with this early Iron Age industry were taken up, checked in the original papers, given a degree of certainty of association (d.c.a.) (Waterbolk, 1971), and statistically treated through a computer programme devised a few years ago (Gehy and Steriff, 1970; see Gehy and de Maree, 1982 for its archaeological application and Gehy, 1980).

To be able to judge the reliability of the association between charcoal being dated and archaeological material, the letters must be well known to the reviewer. This was studied in an unpublished paper written for a seminar at Neuchâtel University in 1982. This has led to the use of the term "Urewe industry" which has the advantage over F. Van Noten’s "Interlacustrine early Iron Age industrial complex" (Van Noten, 1979 to fit the archaeological facts better (see Van Grunderbeek, e.a., 1981 and Soper, 1982, p. 225 for a similar viewpoint).
Fig. 1. Spatial extension of Ibeere Industry sites.
2. SOURCES OF POSSIBLE RADIOCARBON DISCREPANCIES

Before asking for a laboratory radiocarbon treatment and after receiving back the results the archaeologist must always be aware of the possible sources of discrepancy and be prepared to discuss them. Methods exist to circumvent these problems. Errors in dating can be due to the following factors:

a) Fluctuation in the natural carbon of the atmosphere with time. Dendrochronological correction tables exist (e.g. the one used in the present paper, see Klein, e.a., 1982). If the natural 14C increases sharply along a certain time segment, a lumping effect of the dates can present itself. This is materialised by a split in a single culture's continuum with two peaks being distinguishable. Variation can also cause an overestimation of the duration of a culture's "life-span" (Moook, e.a., 1979).

For the time being three classes of 14C atmosphere contents variation are recognised: long-term fluctuations, medium-term fluctuations which can reach a 40% change in the production rate of 14C over a period of only 160 years (!) and short-term fluctuations (11 years solar cycle). The latter has no incidence on archaeological work as the variation amounts to 3% (Moook, e.a., 1979).

b) Fluctuation in the rate of absorption by different species of wood. This is still not firmly elucidated (but see Van der Merwe and Vogel, 1983).

c) Nature of sample being dated with different chemical peculiarities (see Collett and Robertshaw, 1983 for a discussion of bone dating). This does not affect Urn Ware samples as, except for TL dates, all material treated was charcoal.

d) Life-span of the organic material being dated (Waterbolk, 1971, p. 16): this important criteria studied by Waterbolk is often neglected in reports (see Wiesberg and Linick, 1983 for palm trees).

Anthropological analysis should eventually become compulsory. The relation between natural 14C fluctuations and wood life-span has already been emphasized (Moook, e.a., 1979, p. 17 and figs. 2 and 3): the shorter lived wood will be more prone to medium-term wiggles. As recent studies have indicated that such was the case in, at least, the Kwaza/Burundi area (Van Grunderbeek, e.a., 1982, p. 18) care must be taken.

e) Admixtures of charcoal of different age. Thus we have to distinguish between primary admixture (including primary and secondary refuse) before the end of anthropic site formation patterns, which can possibly be indicated by the size of the charcoal fragments (if we follow the argument put forward in ceramic studies, e.g. Bradley and Fulford,
1980, of decreasing size with increased distance to activity areas), and secondary admixture i.e. post-depositional disturbances either by way of anthropic and biotic agents or through special geomorphological processes (Cahen and Moeyersons, 1977; Cahen, e.a., 1983). For a general discussion see Shiiffer, 1983.

The admixture possibility is discussed by the archaeologist. It can be resolved by stratigraphic, typological and refitting studies. As the first news of a radiocarbon dating is usually published as a preliminary account and as a short notice (i.e. Nyame Akuma reports and Journal of African History lists), stratigraphic information should be included, the other methods needing further laboratory time. But a short review of recent works shows that even this minimum is not reached (e.g. Van Grunderbeken, e.a., 1982); on the other hand even exhaustive publications can lack important information (e.g. Schmidt, 1978*).

d) Contamination of samples by way of carbonates, humic acids and rootlets. This can be overcome first by cooperation between archaeologist and the dating laboratory and further by pretreatment at the laboratory with HCl and NaOH.

e) Incorrect association on the part of the archaeologist between cultural material and charcoal. Waterbolk has graded the degree of association (see 1971 and our catalogue).

f) Faulty handling at the dating laboratory. Usually it is found by the techniciens themselves.

i) Underestimation of the statistical error at the 14c laboratory (Clark, 1975).

j) Idiosyncrasies of radiocarbon laboratories, e.g. due to different methods of pretreating the samples (Clark, 1975, p. 252-253; Collett and Roberts, 1983, p. 63; Waterbolk, 1971, p. 19-20). This can indirectly be identified by the archaeologist after using several 14c lab services.

k) Combining dates coming from the same site or feature. Several statistical formulas exist (Huffman, 1977; Long and Rippetoe, 1974; Ward and Wilson, 1978).

l) Faulty statistical analysis of the whole population from one industry or culture. Archaeologists have used several graphic treatment: simple bar graphs (Phillipson, 1975; Van Noord, 1979), histograms of central dates (Cahen and Gilot, 1983), standard deviation histograms (Geyh, 1980).

m) Finally, when working with calendrical events we can add the possibility of incorrect formulas having been used in dendrochronological tables.

* Information on P.R. Schmidt's latest work is lacking. No further elements other than those already published in a series of papers could be obtained. The detail of our present work could be altered by further publications but not the overall outline.
Having reviewed possible sources of error in 14C work, we can now proceed to the presentation of the catalogue entries of the Interlacustrine early Iron Age dates.

3. CATALOGUE

All entries are made in the following order: laboratory number, radiocarbon date with one σ (68.2 % interval quoted in a.d., or b.c., and not in b.p.; i.e. uncorrected), the corrected date at 2σ interval (according to Klein et al., 1982), the site and its coordinates (when available), the degree of association of the sample (according to Waterbolk, 1971 see below) with two numbers 1 or 0 indicating respectively presence/absence of metallurgy and presence/absence of Urewe type ceramics.

The degree of association of the samples is shown by the following factors (Waterbolk, 1971):

A: Full certainty.
B: High probability.
C: Probability
There is a direct functional relationship between the organic material which is measured and the diagnostic archaeological finds.
D: Reasonable possibility.
As C but the fragments are small and scattered.
E: Possibility (added by P. de Marets, 1978). As D but the fragments come from the same depth as the archaeological material, in an unstratified deposit.
All dating materials are charcoal. Thermoluminescence dates are added, but we shall see their discussion separately.
<table>
<thead>
<tr>
<th>lab. number</th>
<th>lab. date (1)</th>
<th>denbro. date</th>
<th>site</th>
<th>reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. 755</td>
<td>250 ± 100 ad</td>
<td>55-570 AD</td>
<td>Ndoe (Rwanda), 02'30'S, 29'45'E.</td>
<td>B. 10</td>
</tr>
<tr>
<td>B. 738</td>
<td>300 ± 80 ad</td>
<td>75-390 AD</td>
<td>Kyanja (Rwanda), 02'30'S, 29'45'E.</td>
<td>B. 10</td>
</tr>
<tr>
<td>Grn. 5752</td>
<td>230 ± 50 bc</td>
<td>400-300 BC</td>
<td>Rutare (Rwanda)</td>
<td>B. 00</td>
</tr>
<tr>
<td>Grn. 5753</td>
<td>295 ± 60 ad</td>
<td>230-570 AD</td>
<td>Rutare (Rwanda)</td>
<td>B. 01</td>
</tr>
<tr>
<td>Grn. 5763</td>
<td>355 ± 30 ad</td>
<td>260-580 AD</td>
<td>Kayiho (Rwanda), 02'36'S, 29'48'E.</td>
<td>B. 10</td>
</tr>
<tr>
<td>Grn. 7904</td>
<td>545 ± 35 ad</td>
<td>575-645 AD</td>
<td>Kayiho II (Rwanda), 02'38'S, 29'48'E.</td>
<td>B. 10</td>
</tr>
<tr>
<td>Grn. 7905</td>
<td>225 ± 30 ad</td>
<td>80-425 AD</td>
<td>Kayiho IV (Rwanda), 02'36'S, 29'48'E.</td>
<td>B. 10</td>
</tr>
<tr>
<td>Grn. 8219</td>
<td>400 ± 30 ad</td>
<td>390-595 AD</td>
<td>Kayiho III (Rwanda), 02'36'S, 29'48'E.</td>
<td>B. 10</td>
</tr>
<tr>
<td>Grn. 8849</td>
<td>295 ± 25 ad</td>
<td>235-555 AD</td>
<td>Kayiho I (Rwanda), 02'38'S, 29'51'E.</td>
<td>B. 10</td>
</tr>
<tr>
<td>Grn. 8850</td>
<td>525 ± 35 ad</td>
<td>570-640 AD</td>
<td>Gishora III (Rwanda), 02'38'S, 29'31'E.</td>
<td>B. 01</td>
</tr>
<tr>
<td>Grn. 9063</td>
<td>220 ± 30 ad</td>
<td>75-420 AD</td>
<td>Remera I (Rwanda), 02'39'S, 29'41'E.</td>
<td>B. 10</td>
</tr>
<tr>
<td>Grn. 9664</td>
<td>220 ± 30 ad</td>
<td>75-430 AD</td>
<td>Remera III (Rwanda), 02'39'S, 29'41'E.</td>
<td>B. 11</td>
</tr>
<tr>
<td>Grn. 9665</td>
<td>285 ± 50 ad</td>
<td>225-560 AD</td>
<td>Kayiho VIII (Rwanda), 02'30'S, 29'48'E.</td>
<td>D. 01</td>
</tr>
<tr>
<td>Grn. 9666</td>
<td>255 ± 30 ad</td>
<td>225-440 AD</td>
<td>Kyaara VI (Rwanda), 02'35'S, 29'49'E.</td>
<td>B. 11</td>
</tr>
<tr>
<td>Grn. 9667</td>
<td>460 ± 55 ad</td>
<td>420-620 AD</td>
<td>Kayiho XV (Rwanda), 02'36'S, 29'49'E.</td>
<td>C. 01</td>
</tr>
<tr>
<td>Grn. 9668</td>
<td>240 ± 25 ad</td>
<td>90-430 AD</td>
<td>Dabare I (Rwanda), 02'37'S, 29'51'E.</td>
<td>C. 11</td>
</tr>
<tr>
<td>Grn. 9670</td>
<td>380 ± 50 ad</td>
<td>255-595 AD</td>
<td>Nyarubehangiro I (Rwanda), 02'40'S, 29'49'E.</td>
<td>C. 01</td>
</tr>
<tr>
<td>Grn. 9672</td>
<td>400 ± 30 ad</td>
<td>615-865 AD</td>
<td>Ngoma I (Rwanda), 02'35'S, 29'51'E.</td>
<td>B. 11</td>
</tr>
<tr>
<td>Grn. 9677</td>
<td>400 ± 50 ad</td>
<td>360-605 AD</td>
<td>Muganga IV (Rwanda), 02'24'S, 30'01'E.</td>
<td>B. 11</td>
</tr>
<tr>
<td>Gx. 1186</td>
<td>390 ± 95 ad</td>
<td>235-620 AD</td>
<td>Uweke (Kenya), 00'25'S, 34'20'15'E.</td>
<td>E. 01</td>
</tr>
<tr>
<td>Gx. 8748</td>
<td>190 ± 160 ad</td>
<td>15-557 AD</td>
<td>Kinywe (Kenya), 02'40'35'S, 35'00'E.</td>
<td>E. 01</td>
</tr>
<tr>
<td>Hrv. 8784</td>
<td>160 ± 120 ad</td>
<td>10-430 AD</td>
<td>Musina (Burundi)</td>
<td>E. 01</td>
</tr>
<tr>
<td>Hrv. 8787</td>
<td>130 ± 110 ad</td>
<td>1260-1475 AD</td>
<td>Mirama III (Burundi)</td>
<td>E. 01</td>
</tr>
<tr>
<td>Hrv. 8776</td>
<td>285 ± 75 ad</td>
<td>225-565 AD</td>
<td>Mirama III (Burundi)</td>
<td>E. 01</td>
</tr>
<tr>
<td>Hrv. 11140</td>
<td>140 ± 55 ad</td>
<td>75-445 AD</td>
<td>Mubuga IX (Burundi)</td>
<td>E. 01</td>
</tr>
<tr>
<td>Hrv. 11141</td>
<td>120 ± 145 bc</td>
<td>1743-1105 BC</td>
<td>Mubuga X (Burundi)</td>
<td>E. 01</td>
</tr>
<tr>
<td>Hrv. 11142</td>
<td>530 ± 85 bc</td>
<td>865-260 BC</td>
<td>Mirama III (Burundi), 02'22'30'S, 30'00'E.</td>
<td>E. 11</td>
</tr>
<tr>
<td>Hrv. 11143</td>
<td>685 ± 95 bc</td>
<td>1030-540 BC</td>
<td>Musina I (Rwanda), 02'28'S, 29'49'E.</td>
<td>E. 01</td>
</tr>
<tr>
<td>Hrv. 11144</td>
<td>1230 ± 145 BC</td>
<td>1760-1115 BC</td>
<td>Musina II (Burundi)</td>
<td>E. 01</td>
</tr>
<tr>
<td>Hrv. 11145</td>
<td>320 ± 75 ad</td>
<td>85-595 AD</td>
<td>Kayiho XXXV (Rwanda), 02'36'S, 29'48'E.</td>
<td>E. 11</td>
</tr>
<tr>
<td>Ly. 2235</td>
<td>430 ± 270 ad</td>
<td>1095-220 AD</td>
<td>Muscu I/3 (Rwanda), 01'32'S, 30'30'E.</td>
<td>D. 01</td>
</tr>
<tr>
<td>Ly. 2667</td>
<td>290 ± 360 ad</td>
<td>535-45 BC</td>
<td>Muremuruonwa I (Burundi)</td>
<td>E. 01</td>
</tr>
<tr>
<td>Ly. 2668</td>
<td>310 ± 180 ad</td>
<td>10-665 AD</td>
<td>Muremuruonwa II (Burundi)</td>
<td>E. 01</td>
</tr>
<tr>
<td>M. 1113</td>
<td>1025 ± 150 ad</td>
<td>875-1335 AD</td>
<td>Ngozi (Uganda)</td>
<td>C. 01</td>
</tr>
<tr>
<td>N. 435</td>
<td>270 ± 110 ad</td>
<td>65-580 AD</td>
<td>Uweke (Kenya)</td>
<td>E. 01</td>
</tr>
<tr>
<td>N. 436</td>
<td>320 ± 110 ad</td>
<td>85-595 AD</td>
<td>Uweke (Kenya)</td>
<td>E. 01</td>
</tr>
</tbody>
</table>
4. CRITICAL ASSESSMENT

a) Radiocarbon dates

The discussion will develop along three converging lines, country by country, as follows: first an analysis of dates associated with Urewa metalurgy sites; secondly a review of metalurgy dates; finally a study of Urewa sites from the cultural point of view. In each case, correlations will be made for each date in order to ascertain the degree of certainty of association (dca) outlined in the catalogue.

This precaution finds its raison d'etre in a decreasing level of association between Urewa material and metalurgy, two cultural aspects which must be dissociated to understand the start of iron pyro-technology in the area considered, and in a decreasing level of association between charcoal samples and cultural material. We will start off with a series of dates which ought to be rejected from the outset from further analysis after checking in the original papers.

From Katuruka (Buhiara, Tanzania) two 14C dates were rejected by the archaeologist (P. Schmidt) due to "a later intrusion into the center of the pit during which time foreign charcoal was introduced" (Schmidt, 1978, p. 192-193; N. 894, 1250 ± 120 bc) and to a "contaminated date, obtained from charcoal recently introduced into the pit" (Schmidt, 1978, p. 179; N. 897, 1080 ± 110 bc).

Also from Katuruka, N. 899 (1470 ± 120 bc) though accepted is associated to a pre-Urewa level, the charcoal being perhaps "the remains of non cultural burning—from a forest fire" (Schmidt, 1978, p. 179-180). Thus early or old charcoal could have been mixed in the fill of later features with contemporaneous or young charcoal, leading to the N. 894 and N. 897 datings.

While working on the royal tombs of Rwanda, F. Van Noten excavated a pit filled only with charcoal: Mutara I, Ruebenmo (Van Noten, 1972). Though dated of 230 ± 50 bc (GrN.5752) this sample is negatively associated with cultural material, as Urewa sherds are only found outside the pit in the topsoil.

R. Soper published in 1971 his report of fieldwork done in the Murchinson Falls area of Uganda (Soper, 1971). A 14C date was obtained for an excavation at Chobi where Urewa material was obtained. A reappraisal of the site report shows that the sample comes from layers 5 and 6 and not from Urewa levels 1 to 4 (N. 784, 290 ± 125 ad in Sumner, 1972, curiously reported in Radiocarbon, vol. 14, p. 236 as ± 130 ad). Again a case of bad association.

Finally let us discuss the famous Nongeni rock shelter date, M. 1113 (1025 ± 150 ad), from Uganda. Two different types of errors can be
detected. First a case—again—of bad association, the sample comes from a layer in a LSA site (see Nelson and Posnansky, 1970; Deacon, 1966, p. 62). Then a surprisingly late date for an LSA site in the Interlacustrine area perhaps due to contamination. Two reasons to reject this very doubtful date. If hard-core afficianados still cling to it, they must consider the Urewere layer post-dating the 11th century.

Let us now come to our main discussion, i.e. 14C material associated with cultural material of the Urewere industry.

Tanaunua:

Katuruka is the most delicate site to deal with due to its multi-component nature giving rise to stratigraphic and chronological problems. As we saw earlier on, three dates cannot be associated with Iron Age occupation. We are then left with seven dates which cluster into two groups, and are thus linked.

Three out of the four early dates are of B degree of association (N.895, 550 bc; RL.806, 520 bc; N.890, 458 bc); to them can be associated a C degree date (RL.405, 610 bc), its charcoal having been collected in the immediate surroundings of feature 6, from which dates RL.406 and N.890 (two different labs it must be noted) come from. N.895 from feature 58 (with a date sometimes noted as 550 (Schmidt, 1978, p. 19); or as 500 (Schmidt, 1978, p. 191)) can then be linked to the other three dates.

The second cluster of dated dates (N.891, 60 ad; N.892, 120 ad; and N.894, 170 ad), from the same lab, is of B degree of association.

Another site of Tanaunua, KMT Kemondo Bay, only known to us by preliminary notes (Mgonzona, 1981), yields five B degree dates extending over a few centuries without any clusters like Katuruka. Looking at them with 2 sigmas intervals we see an overlapping. It is possible that a continuous lake level pattern was in force here; another solution would be to postulate contamination of some unspecified date masking real clustering. In this case the median extent from 10 ad to 540 ad would represent the overall successive village occupations.

The last iron furnace dated in this country is Buoyez, RL.1008. Its fourth century ad date is consistent with results from Kemondo Bay and Katuruka; in addition it is a B degree date.

To sum up, the earliest evidence for iron smelting in the country comes from Katuruka. Four charcoal samples related by their high degree of association with Urewere material and related in space have dates with sigmas overlapping. These three interrelated factors allow us to use a best estimate of 537 ± 55 bc for the first Iron Age community at Katuruka.
The second cluster of linked dates also has high confidence ratings for the same three interrelated factors. A best estimate of 114 ± 62 ad for the second Katuruuka settlement can be calculated. Each village in Katuruuka knew iron smelting. By pooling all the iron smelting dates from the country we see that the technology was known from the 6th century bc. The cultural gap between the 6th century bc and the 1st century ad can be filled by considering the 14c dates for Urewe only material (RL.1009, RL.013 from Kemondo Bay; N.902 from Makongo). Thus a cultural continuity in the area of Tanzania studied—i.e. western—seems to hold true. Perhaps, as the two linked dates of Makongo suggest, continuity until the 10th century ad will be in the near future proven.

Kenya:

Only five dates are actually known to us from this country. Three from the Urewe parent site, one from Yala Alego and one from R. Soper's Ganga site (Robertshaw, 1964). All of them, except R. Soper's site, are of uncertain positive association (i.e. D and E d.c.a.). The dates from Urewe are linked and provide a weighted average of 476 ± 72 ad (Ga.1186; N.486; N.455).

The date of Yala Alego (N.457, 400 ± 235 ad) must be treated with caution for a regional synthesis. This is due to its D d.c.a., its large standard error, and its superficial deposit (~ 15–30 cm). Finally, Ganga has yielded a late second century ad date (Ga.7848, 190 ± 160 ad).

In favor of the Kenya dates is their agreement with most of our R d.c.a., dating evidence associated with similar material in outlying regions and their regional overlapping with one sigma interval.

Uganda:

The only couple of dates from this country have already been discussed and rejected as aberrant or unassociated with Urewe.

Burundi:

Though Iron Age research only started seriously a few years back with M.-C. Van Grunbergen's project, seven dates are now known.

6. We have included here R. Soper's Ganga date Ga.7648 after reading F. Robertshaw's F.A.H. article before sending our own paper to the editor.
Two of them are quite isolated from the main group. They are second millenium bc dates: Hv. 11141 from Mulbuga V associated with E.I.A. material and Hv.11144 from Rwyyange I, an iron furnace. Though confirming each other by their overlap (1210 ± 145 bc and 1230 ± 145 bc respectively), caution must be called for as the very early dates from Tanzania (N.84 and N. 897) have been discounted here.

Contemporaneity between Tanzania, Rwanda and Burundi early smelting activities presents itself with a 14 C d.c.a. date from Mirama III (Hv.11142, 530 ± 85 bc). Sherds and slag are associated there.

Two dates await confirmation (Hv.11140, 240 ± 55 ad and Hv.10874, 160 ± 120 ad). They would then over up the gap between the 5th centuries bc and ad.

Again confirmation is needed for the surprisingly late 14th century date of Mirama II (Hv.10875, 1360 ± 110 ad) said to be associated with E.I.A. material (Van Grundenbock, e.a., 1982).

Rwanda

With 21 radiocarbon and 4 TL dates published, Rwanda has the largest sample in the Interlacustrine area.

Three dates come from the Hanover tab, three from Lyon, two from Bern and the rest from Groningen. 19 of the 23 14C dates are of B. c.a., all of them from charcoal found in furnace bowls.

Due to their high degree of association, their small standard error (± 50 years or less) and their cohesiveness all the dates from ad 200 to ad 700 can be accepted without any further discussion, but one: GN. 5753.

It is associated with urewe sherds, slag, tools, grinding stone and quartz artefacts, dubbed LSA by the excavator (Van Noreen, 1972, p. 8 and 1979, p. 71). This little inconostasie enables an elaboration on the subject. If the lithic material is LSA it means admixture. Two hypotheses are suitable: either they are of LSA date and added in the filling of the furnace—with the assumption of possible charcoal admixture—or they are of EIA date and the filling can be considered homogenous. We, ourselves, incline for the Interlacustrine hypothesis as the 14C dating is an agreement with other B. c.a. dates and it can be shown that lithic and urewe ceramic material cocistited (Mukinamira and Ruhimanganye rock shelters).

The date from Ngoma I is a bit isolated in the 7th century ad. Its processing having been done by Groningen, its d.c.a. being high, its standard error low and finally finding a similar dating in Tanzania (K.L.1014, Kemoing Bay) leads to our acceptance of the 14C determination.

The main interest of our Rwanda sequence are the three bc dates and
we now shall turn our discussion on then. Using the simple bar graphic (fig. 2) two peculiarities can be shown: a large standard error in the counting and a relatively random placing of the dates. The three 14C dates come from the Hanover (Gasia, Mutwarubona) and Lyon (Mucucu) labs, like all early dating in Rwanda and Burundi. All Lyon dates are connected with the largest errors. On the other hand all ad datings by Hanover agree with those done at Groningen like the single ad date from Lyon.

One of the three, two are B.d.c.a. samples (Gasia, 685 ± 95 bc; Mutwarubona, 290 ± 160 bc). The Mucucu date (430 ± 270 bc) comes from scattered charcoal collected in a settlement layer (i.e. D.d.c.a.) of a rock shelter; this type of formation is known for easy stratigraphical disturbance. Though the large standard error for Mutwarubona and Mucucu speaks against early dating of metallurgy in Rwanda, several factors contribute to its acceptance. We have an overlapping at the three different sites, two high degree of association samples and convergent dating results from Tanzania and from Burundi.

b) Thermoluminescence dates (TL)

An attempt was made by F. Van Noten to date four iron furnace bowls from Kabuye (Rwanda) by TL. The material used in all instances was the components of the furnace's superstructure, i.e. the so called "bricks". Having the cultural material itself dated, gives an A degree of association to these dates. Before hand we must discuss the statistical agreement between 14C and TL dates coming from the four furnaces. For a review of possible TL contamination see Wagner, e.a., 1983 and also Atikets, 1977. We used radiocarbon calibrated dates (Klein, e.a., 1982) to agree with the TL dates.

Kabuye I 14C: 655 ± 30 AD, AD 420 (260-580 AD) TL: AD 415 ± 155 (50-150 AD).

Kabuye II 14C: 745 ± 35 AD, AD 610 (575-645 AD) TL: AD 610 ± 125 (485-735 AD).

Kabuye III 14C: 400 ± 30 AD, AD 492 (390-595 AD) TL: AD 265 ± 160 (105-425 AD).

Kabuye IV 14C: 225 ± 30 AD, AD 252 (80-425 AD) TL: AD 615 ± 120 (495-735 AD).

At 2 sigma interval Kabuye I to III overlap with their respective TL dates. Even at 2 sigma interval there is none with Kabuye IV. It means either a 14C or a TL contamination of some sort. The possible error cannot be linked with the TL laboratory as the three
other samples treated agree with the 14c dating. Also the various TL
datings by Oxford laboratory in Central Africa agree well with other 14c
dates or archaeological models (see de Mars, 1982, for other TL
dates). The 14c date agree with other similar samples treated by the same
laboratory and for the same area. In addition it has a high degree of
correlation with the cultural material so dated.

It would then seem that local chemical contamination of the TL sample
must accounts for the discrepancy noted, though with caution.

5. DISCUSSION OF UREEVE CHRONOLOGY

As was indicated in our introduction, Ureeve is undoubtedly associated
with iron production and semi-sedentary villages. Domestication of
beetles was practised at least from the 3rd century ad (Van Gruber, 1922, p. 42),
and sergo and finger millet agriculture is a definite possibility (id., p. 42). The only sites not yielding pure Ureeve sherds are the
Kabuye II furnace and the Kabuye XV hearth. This rare "foreign"
material shows that all the iron furnaces in the 7th century bc to the 6th
century ad time bracket with no Ureeve sherds associated may
nevertheless be linked to this industry.

Our regional study of 14c dates shows that from a statistical viewpoint
it is too early to try to discover population flux in the Interlacustrine area
from 14c data alone. By looking back at our fig. 1, even though the
Ureeve distribution map shows regularly placed early Iron Age sites, we
can notice a few concentrations. By dividing the map roughly in three
zones we can group the 14c dates as indicated on fig. 2. The only two
regions having detailed 14c sequences are Rwanda around Butare and
Tanzania on the western shore of Lake Victoria, both very limited in
space. Both sequences yield dates from c. 6th century bc to c. 6th
century ad.

There is a possibility of iron being worked around 1200 bc in Burundi
(Rwiyange, Mubuga V). In 1969, Kekali hypothesised an anthropic
activity to explain the deforestation in the Victoria Lake area around
1000 bc. Perhaps a link will be established in the future between the
archaeological and ecological facts. Events will be more firmly established
later on.

West of Lake Victoria iron production is synchronous in the western
(Rwanda/Burundi) and central areas (Tanzania) (see fig. 4). The dates
from the eastern area (east of Lake Victoria, i.e. Kenya) are too piecemeal
to reveal anything, though they now start to show similar patterns as in
the central and western areas (fig. 2).

The statistical population of 14c dates from Rwanda and Burundi
ilustrates two periods of iron production. Period I a circumscribed by
three dates (Hv.11142, Hv.11143, Ly.6667). It is to be noted that the
gasana dendrochronolog) pushes up to c. 800 BC iron production (Klein,
e.a., 1982). Period II is the old cultural sequence of the Urewre industry,
from c. 3rd century to 6th century ad. It is spatially represented by a high
density of furnaces and villages (5).

These periods can be ascertained on the eastern highlands of Tanzania
where the Katuruka settlement represents period I and the ad dates
period II. Here too can be seen a difference in settlement density. The
main difference lies with the apparently early start of period II in
Tanzania.

So in the western highlands, between the 3rd century bc and the 3rd
century ad, and in the eastern highlands, between the 5th century and the
end of the 1st century bc, lies a "gap" in metallurgical activity, in which
only a few rare Urewre shards have been dated. It can be explained in
several ways:

a) An absence of settlements due to ecological causes (Van Grunderbeeck,
e.a., 1982, p. 45).
b) A bad sampling strategy aimed at iron technological study which thus
leads to the excavation of numerous furnace bowls.
c) The excavators' preference for easily accessible sites leading to a
special lumping of the digs (for instance around Butare in a 150 square
kilometers area).
d) The real absence of metallurgy in the areas extensively studied
explained by the iron workers' practice of shifting their furnaces
through generations.
e) Natural 14c wiggles leading to date lumping (Mook, e.a., 1979,
p. 11), perhaps linked to wood species 14c absorption rates.
f) A real dichotomy due to long-term resistance of the African way of life
to the introduction of iron and of its social implications for the
symbolic sphere (see e.g. de Maree, 1985 b).

We thus see that before laying down cultural models to explain this
"gap", further research will be needed to eliminate the above mentioned
possibilities, except for e. The latter can be discarded by using
dendrochronological corrections (Klein, e.a., 1982).

By looking at fig. 3 no wiggle reveals itself, the dates are still roughly
related in the same manner. It can be observed the difference between
dendro- and radiocarbon datings to increase with time, from Δ = 75 at
AD 740 to Δ = 215 at 1425 BC. Using dendro-corrected dates only
results in some reversal of seniority for some Rwanda in the AD
sequence.

It is only by considering a general level of synthesis that our discussion
lies on secure grounds, i.e. the overall Urewre time sequence.
Fig. 3. Dendro-corrected Interfacustrine Early Iron Age dates (using Klein, e.a., 1982).
Fig. 4. Computer-treated histograms of Urewe 14C dates.
We have used a graphic analysis developed by M. Geyh from Hanover laboratory for the 14C analysis. Fig 4 shows three of the histograms. Graph A shows B degree association dates linked with metallurgy; graph B shows all the metallurgy associated dates, and finally graph C all degree of association dates linked with Urewe.

There is no major difference between the three except perhaps for the 10th century Makongo dates in graph C. This shows their isolation even better and underlines the unique character of the 4th century date of Mirama II which is not included here in the statistical treatment.

From the graphs we see the Urewe industry lasted from 2500 BP to 1380 BP (graph C). For the time being the peak at 1700 BP can be explained as noted earlier by the importance of research done in the same local areas. By extending research to larger parts of Rwanda, Tanzania and Kenya we will see if this peak is eliminated. Early metallurgy is known from three sites: Katuruka (Tanzania), Mirama (Burrundi), Gisiga (Rwanda).

As it stands today all the dates retained by us from 2500 to 1380 BP are fully reliable regarding their cultural association and dating accuracy.

Several authors have stressed that the seemingly homogenous Urewe tradition points to further investigation before accepting the new chronology, which extends to a millennium ceramic stability (e.g. Loper, in Azumai, XIII, p. 150). Though instead, with such a time-depth, stylistic changes should be found, two facts must be stressed. A few papers have tried to define facies in the Urewe tradition (e.g. Van Notten, 1979, 1983) or have recognized regional peculiarities (Van Grunderbeek, 1982, p. 33). This points to existing differences in the assemblages constituting the Urewe industry and shows we urgently need a detailed analysis of this ceramic tradition alongside a thorough discussion of iron smelting techniques.

IMPORTANCE OF THE INTERLACUS TRINE AREA
FOR IRON AGE STUDIES

This new chronological framework enables us to reconsider the spontaneous innovation hypothesis of metallurgy in sub-Saharan Africa (Rundel, 1980, p. 237) and more particularly in the Interlacustrine area (Lunyiigo, 1976; Mgenenu, 1981, p. 446).

Until a few years ago two paradigms were accepted, that had one thing in common: iron technology in the area considered had to diffuse from contacts with the Mediterranean shores either by way of Carthage, founded in 814 BC, and the trans-Saharan trade route or by way of the Meroe kingdom which received it indirectly form the Near-East, i.e. from Anatolia (fig. 6). These two hypothesis led either directly
Fig. 5. Earliest iron-smelting centres from Africa: 1. Carthage; 2. Meroe kingdom; 3. Nok culture; 4. Yewa Industry; 5. Copper I and Iron I from Niger; 6. Obobogo site (Cameroon); 7. El Ebeima mound (Solam); 8. «Sahelines» of Libreville site (Gabon); 9. Onzambi 2 site (Moye, Gipoon, Gabon); 10. Oyem site (Woleu-Ntem, Gabon).
southward, or through the Nok "culture" of Nigeria to the Interlacustrine area.

It is known that iron objects were present in the kingdoms of Meren before 400 bc though in small numbers and therefore could have been imported (Rusada, 1980, p. 235). The only dates which can be linked with local production are one in the 8th century bc for charcoal found at the bottom of the largest slag heap 7, one in the 3rd century bc for settlement levels giving a post quem date for small bowl furnaces' (Birn.98) and a few others in the 4th and the 5th centuries ad for slag remains (Kense, 1983, p. 70).

Carthage, though established late in the 9th century bc, did not leave any stepping stones southward; an interesting point made is the logical view that Carthaginians kept iron production a secret to form the nomadic tribes of Northern Africa for commercial purposes just as they did for other things (Rusada, 1980, p. 237), though recent research tends to see once again the town as a diffusion center (McIntosh and McIntosh, 1983, p. 242).

In Nigeria the Nok "culture" has early dates for metallurgical activities, namely in the 6th century bc 8. It has even been suggested that iron technology practice in Nigeria was indigenous (Rusada, 1980, p. 237).

Recently, in Niger, very interesting dates for copper working were obtained near Agades. They extend over the second millennium bc. This copper working (= copper I period, Grebenaart, 1983) predates iron working for which we would only have a single early date in the 7th century bc. 9 It seems the uncovered remains relate to primitive technology (see McIntosh and McIntosh, 1983; Eichard, 1983) incapable of being at the origins of later iron pyrotechnology; Van der Merwe and Avery, 1982, but see Grebenaart, 1985).

In the current state of our research, the oldest evidence for iron smelting in Central Africa comes from Gaboon. There, iron slag has recently been found in an iron-smelting furnace at the Oonobili 2 site (Moyo-Dougoap province) and dated to the 6th-century bc. The charcoal came from separate clusters in the furnace's pit. A weighted average is

7. Birn,97, 514 ± 73 bc (Rusada, 1980, p. 236); Birn,98, 280 ± 180 bc (Kense, 1983, p. 64); see also Alden, 1980, p. 69.
8. BA,984, 591 ± 74 bc; BA,985, 538 ± 84 bc; BA,941, 591 ± 104 bc; TL, 555 ± 210 BC (Cafarelli and Davio, 1979, p. 10).
9. Copper I dates from Niger:
 GC,471 1500 ± 120 bc; GC,4677, 950 ± 100 bc (Cafarelli and Davio, 1979, p. 9-10).
 AC,2598, 1970 ± 90 bc; AC,2999, 2090 ± 90 bc; AC,2680, 1850 ± 90 bc (GC,5273, 1750 ± 50 bc; GC,5175, 1550 ± 70 bc; GC,5176, 1580 ± 100 bc; GC,5175, 1734 ± 100 bc; GC,5176, 1715 ± 100 bc; GC,5177, 1560 ± 100 bc; GC,5179, 955 ± 120 bc (Kense, 1983, p. 296-297; McIntosh and McIntosh, 1986, p. 64).
10. Dak,141, 670 ± 120 bc (Foumiow and Brimelow, 1976, p. 64).
needed to give us a mean from the two processed dates (Beta 14834 and
G1F7130)\(^\text{11}\).

On the gobenese coast, near to Libreville, iron slag has been recovered at the "Salvini" site in a charcoal layer dated to the 6th century bc\(^\text{12}\).

From the fourth century bc onwards, quite a few gobenese sites have yielded solid evidence for wide-ranging iron smelting in the equatorial forest. Since a previous paper (Cist, e.a., 1988) additional dates have been processed. Iron slag has been dated to late in the 4th century bc near Oyem from two separate refuse pits\(^\text{13}\) near to the Cameroons. In this latter country, in the Yaoundé subarea at Oboko, several of the refuse pits excavated contained iron slag dated to the fourth and second centuries bc (de Maret, 1982; 1985)\(^\text{14}\).

For the time being we do not have sufficient evidence to follow iron smelting's diffusion to Niger or to the Interlacustrine area.

As it stands today the Victoria Lake area is one of the oldest well dated iron working center in Africa; it is at least at the origin of all east and southern Africa's iron smelting techniques.

Of course dating evidence is not sufficient, the typological correlations are to be studied concurrently to eventually lead us to diffusion centers and diffusion processes. It is only that the shaky parallels drawn to link the Urwe industry with the north and west do not stand the course of time and reinforces the isolation of this Industry even further\(^\text{15}\).

Urewe ware has been seen as related to Sudan, Tchad and the Central African Republic wares.

Relations were sought with Zankor in Kordofan and from a second "ruined town in Darfur Province", Sudan (Leakey, e.a., 1948, p. 41), with the Telimmou and Calgou styles in Amadi, Tchad (Soper, 1971, p. 31), with ceramics from the Koro Toro site in the Bahr-el-Ghazal valley of Tchad (Van Noten, 1979, p. 77) and finally with Tchadian ware and the Batalimo assemblage of the Central African Republic (Philipson, 1977, p. 218).

\(^{11}\) Beta 14834, 390 ± 70 bc; G1F7130, 450 ± 50 bc. By following Long and Phippsen, 1974 and Ward and Wilson, 1978, we find 330 bc and 557 bc respectively.

\(^{12}\) G1F6078, 540 ± 100 bc.

\(^{13}\) Pit No. 1: L.1521, 330 ± 56 bc.

\(^{14}\) Pit No. 2: L.1520, 270 ± 75 bc.

\(^{15}\) Only two refuse pits at Oboko have yielded iron slag: pits 4 and 7.

\(^{16}\) Pit No. 4: Hs.1056, 2675 ± 165 bc; Ls.1142, 430 ± 100 bc.

\(^{17}\) Pit No. 7: Ls.1194, 170 ± 70 bc; Ls.1295, 170 ± 120 bc.

\(^{18}\) Though the developing work in southern Sudan could give some very interesting results, see Robermont, 1964, p. 274 for T.4582, 840 ± 170 bc associated with small iron points at El Eheime record.
CONCLUSIONS

We have seen the earliest dates for iron production in the Interlacustrine area to be fully reliable. Thus the Interlacustrine early Iron Age would be one of the oldest known center of iron production in Africa. The possibility of an another center in Niger, developed from copper technique, will have to be discussed in the years to come. The chronological data and the absence of serious outside typological ties force us to consider autochthonous invention. The possibility of a greater time-depth for Urewe cultural material suggested by very early dates (Rwiyange and Muhuga in Burundi) strengthens the idea even further: the hypothesis of local evolution of Urewe ware can be examined, metallurgy would be a later adjunction, cultural continuity would then be the key.

Future research will have its say in the final elaboration of a convincing model for the origin and social context of iron production in this area: "the priorities need ordering so that there is an increasing emphasis on the development and changing adaptations of early Iron Age cultures on a regional basis" (Schmidt, 1978, p. 291), and "new beginnings on limited portions of the Bantu question are required, rather than new paradigms" (Vansina, 1980, p. 313).

BIBLIOGRAPHY

